FLOOD INSURANCE STUDY FEDERAL EMERGENCY MANAGEMENT AGENCY **VOLUME 2 OF 3** # SAN MATEO COUNTY, CALIFORNIA AND INCORPORATED AREAS | COMMUNITY NAME | NUMBER | COMMUNITY NAME | NUMBER | |--|--------|---------------------------------|--------| | ATHERTON, TOWN OF* | 060312 | SOUTH SAN FRANCISCO, CITY
OF | 065062 | | BELMONT, CITY OF | 065016 | WOODSIDE, TOWN OF | 060330 | | BRISBANE, CITY OF | 060314 | | | | BURLINGAME, CITY OF | 065019 | | | | COLMA, TOWN OF | 060316 | | | | DALY CITY, CITY OF | 060317 | | | | EAST PALO ALTO, CITY OF | 060708 | | | | FOSTER CITY, CITY OF | 060318 | | | | HALF MOON BAY, CITY OF | 060319 | | | | HILLSBOROUGH, TOWN OF | 060320 | | | | MENLO PARK, CITY OF | 060321 | | | | MILLBRAE, CITY OF | 065045 | | | | PACIFICA, CITY OF | 060323 | | | | PORTOLA VALLEY, TOWN OF | 065052 | | | | REDWOOD CITY, CITY OF | 060325 | | | | SAN BRUNO, CITY OF * | 060326 | | | | SAN CARLOS, CITY OF | 060327 | | | | SAN MATEO COUNTY
(UNINCORPORATED AREAS) | 060311 | | | | SAN MATEO, CITY OF | 060328 | | | ^{*}No Special Flood Hazard Areas Identified #### **REVISED:** FLOOD INSURANCE STUDY NUMBER 06081CV002C Version Number 2.3.2.1 PRELIMINARY SEP 14, 2015 #### **TABLE OF CONTENTS** #### Volume 1 | | <u>Page</u> | |---|--| | SECTION 1.0 – INTRODUCTION 1.1 The National Flood Insurance Program 1.2 Purpose of this Flood Insurance Study Report 1.3 Jurisdictions Included in the Flood Insurance Study Project 1.4 Considerations for using this Flood Insurance Study Report | 1
1
2
2
9 | | SECTION 2.0 – FLOODPLAIN MANAGEMENT APPLICATIONS 2.1 Floodplain Boundaries 2.2 Floodways 2.3 Base Flood Elevations 2.4 Non-Encroachment Zones 2.5 Coastal Flood Hazard Areas 2.5.1 Water Elevations and the Effects of Waves 2.5.2 Floodplain Boundaries and BFEs for Coastal Areas 2.5.3 Coastal High Hazard Areas 2.5.4 Limit of Moderate Wave Action | 20
20
34
35
35
36
36
37
38
39 | | SECTION 3.0 – INSURANCE APPLICATIONS 3.1 National Flood Insurance Program Insurance Zones 3.2 Coastal Barrier Resources System | 39
39
40 | | SECTION 4.0 – AREA STUDIED 4.1 Basin Description 4.2 Principal Flood Problems 4.3 Non-Levee Flood Protection Measures 4.4 Levees | 41
41
41
54
56 | | SECTION 5.0 – ENGINEERING METHODS 5.1 Hydrologic Analyses 5.2 Hydraulic Analyses 5.3 Coastal Analyses 5.3.1 Total Stillwater Elevations 5.3.2 Waves 5.3.3 Coastal Erosion | 60
60
71
89
90
92
93 | | <u>Figures</u> | <u>Page</u> | | Figure 1: FIRM Panel Index Figure 2: FIRM Notes to Users Figure 3: Map Legend for FIRM Figure 4: Floodway Schematic | 12
13
16
34 | | _ | e 5: Wave Runup Transect Schematic | 37 | |-------|---|--------------| | _ | e 6: Coastal Transect Schematic e 7: Frequency Discharge-Drainage Area Curves | 39
68 | | | e 8: 1% Annual Chance Total Stillwater Elevations for Coastal Areas | 91 | | | | | | | <u>Tables</u> | | | | <u>rables</u> | Page | | | | | | | 1: Listing of NFIP Jurisdictions | 2 | | | 2: Flooding Sources Included in this FIS Report3: Flood Zone Designations by Community | 21
40 | | | 4: Coastal Barrier Resources System Information | 40 | | | 5: Basin Characteristics | 41 | | | 6: Principal Flood Problems | 41 | | | 7: Historic Flooding Elevations | 53 | | | 8: Non-Levee Flood Protection Measures | 54 | | | 9: Levees | 57 | | | 10: Summary of Non Coastal Stillwater Florations | 61
69 | | | 11: Summary of Non-Coastal Stillwater Elevations12: Stream Gage Information used to Determine Discharges | 71 | | | 13: Summary of Hydrologic and Hydraulic Analyses | 73 | | | 14: Roughness Coefficients | 89 | | | 15: Summary of Coastal Analyses | 89 | | Table | 16: Tide Gage Analysis Specifics | 92 | | | | | | | Volume 2 | <u>Page</u> | | | | <u>r agc</u> | | | 5.3.4 Wave Hazard Analyses | 94 | | 5.4 | Alluvial Fan Analyses | 104 | | SECT | ION 6.0 – MAPPING METHODS | 105 | | | Vertical and Horizontal Control | 105 | | 6.2 | Base Map | 106 | | 6.3 | Floodplain and Floodway Delineation | 106 | | 6.4 | Coastal Flood Hazard Mapping | 113 | | 6.5 | FIRM Revisions 6.5.1 Letters of Map Amendment | 116
116 | | | 6.5.2 Letters of Map Revision Based on Fill | 117 | | | 6.5.3 Letters of Map Revision | 117 | | | 6.5.4 Physical Map Revisions | 117 | | | 6.5.5 Contracted Restudies | 118 | | | 6.5.6 Community Map History | 118 | | SECT | ION 7.0 – CONTRACTED STUDIES AND COMMUNITY COORDINATION | 120 | | 7.1 | Contracted Studies | 120 | | 7.2 | Community Meetings | 122 | | SECTION 8.0 – ADDITIONAL INFORMATION |)N | 125 | |---|--|---| | SECTION 9.0 – BIBLIOGRAPHY AND REF | ERENCES | 127 | | <u>Figures</u> | | _ | | | | <u>Page</u> | | Figure 9: Transect Location Map | | 103 | | <u>Tables</u> | | | | | | <u>Page</u> | | Table 17: Coastal Transect Parameters Table 18: Summary of Alluvial Fan Analyses Table 19: Results of Alluvial Fan Analyses Table 20: Countywide Vertical Datum Conve Table 21: Stream-Based Vertical Datum Con Table 22: Base Map Data Table 23: Summary of Topographic Elevation Table 24: Floodway Data Table 25: Flood Hazard and Non-Encroachm Table 26: Summary of Coastal Transect Map Table 27: Incorporated Letters of Map Chang Table 28: Community Map History Table 29: Summary of Contracted Studies In Table 30: Community Meetings Table 31: Map Repositories Table 32: Additional Information Table 33: Bibliography and References | rsion oversion n Data used in Mapping nent Data for Selected Streams oping Considerations ge | 95
104
104
105
106
107
108
113
114
117
119
120
123
125
126
128 | | <u>Exhibits</u> | | | | Flood Profiles Brittan Creek Colma Creek Cordilleras Creek Corte Madera Creek Denniston Creek Devonshire Branch of Pulgas Creek El Granada Creek Harbor Industrial District Channel La Honda Creek | Panel
01-04 P
05 P
06-09 P
10-15 P
16-17 P
18 P
19-20 P
21-22 P
23-24 P | | ### Volume 3 Exhibits | Flood Profiles | <u>Panel</u> | |---|--------------| | Montara Creek | 25-26 P | | Pescadero Creek | 27-31 P | | Pulgas Creek | 32-36 P | | San Gregorio Creek | 37-39 P | | San Mateo Creek | 40-42 P | | San Vicente Creek | 43-44 P | | Sausal Creek | 45-48 P | | West Union Creek | 49-50 P | | Woodhams Creek | 51-53 P | | 16 th Avenue Drainageway Channel | 54-55 P | | 19 th Avenue Drainageway Channel | 56 P | | Laurel Creek | 57-59 P | #### **Published Separately** Flood Insurance Rate Map (FIRM) #### 5.3.4 Wave Hazard Analyses Overland wave hazards were evaluated to determine the combined effects of ground elevation, vegetation, and physical features on overland wave propagation and wave runup. These analyses were performed at representative transects along all shorelines for which waves were expected to be present during the floods of the selected recurrence intervals. The results of these analyses were used to determine elevations for the 1% annual chance flood. Transect locations were chosen with consideration given to the physical land characteristics as well as development type and density so that they would closely represent conditions in their locality. Additional consideration was given to changes in the total stillwater elevation. Transects were spaced close together in areas of complex topography and dense development or where total stillwater elevations varied. In areas having more uniform characteristics, transects were spaced at larger intervals. Transects shown in Figure , "Transect Location Map," are also depicted on the FIRM. Table provides the location, stillwater elevations, and starting wave conditions for each transect evaluated for overland wave hazards. In this table, "starting" indicates the parameter value at the beginning of the transect. #### Wave Height Analysis Wave height analyses were performed to determine wave heights and corresponding wave crest elevations for the areas inundated by coastal flooding and subject to overland wave propagation hazards. Refer to Figure 6 for a schematic of a coastal transect evaluated for overland wave propagation hazards. Wave heights and wave crest elevations were modeled using the methods and models listed in Table 15, "Summary of Coastal Analyses". #### Wave Runup Analysis Wave runup analyses were performed to determine the height and extent of runup beyond the limit of stillwater inundation for the 1% annual chance flood. Wave runup elevations were modeled using the methods and models listed
in Table 15. **Table 17: Coastal Transect Parameters** | T | · | ordinates
3 UTM Zone 10) | Tot | al Water Elevat | ion (feet NAVD | 88) ¹ | 7 | BFE (ft) | |----------|-----------|-----------------------------|----------------------|---------------------|---------------------|-----------------------|------|-----------| | Transect | X | Y | 10% Annual
Chance | 2% Annual
Chance | 1% Annual
Chance | 0.2% Annual
Chance | Zone | BFE (III) | | 1 | 543121.40 | 4172275.94 | 19.0 | 22.7 | 24.7 | 30.4 | VE | 25 | | 2 | 543460.60 | 4170731.60 | 19.7 | 21.8 | 22.6 | 24.6 | VE | 23 | | 3 | 543670.03 | 4169232.55 | 18.2 | 23.7 | 26.9 | 36.9 | VE | 27 | | 4 | 543726.64 | 4168096.51 | 24.5 | 26.9 | 27.8 | 29.9 | VE | 28 | | 5 | 543698.93 | 4167097.82 | 22.0 | 23.7 | 24.4 | 25.8 | VE | 24 | | 6 | 543519.80 | 4165866.55 | 26.6 | 30.4 | 31.9 | 35.4 | VE | 32 | | 7 | 543440.47 | 4165327.29 | 23.1 | 25.5 | 26.5 | 28.8 | VE | 26* | | | · | ordinates
33 UTM Zone 10) | Tot | al Water Elevati | ion (feet NAVD | 38) ¹ | _ | 555 (0) | |----------|-----------|------------------------------|----------------------|---------------------|---------------------|-----------------------|------|----------| | Transect | X | Y | 10% Annual
Chance | 2% Annual
Chance | 1% Annual
Chance | 0.2% Annual
Chance | Zone | BFE (ft) | | 8 | 543413.41 | 4164957.51 | 21.0 | 23.1 | 24.1 | 26.3 | VE | 24 | | 9 | 543426.56 | 4164532.72 | 19.7 | 21.6 | 22.4 | 24.1 | VE | 22 | | 10 | 543553.83 | 4163300.91 | 31.3 | 34.2 | 35.3 | 37.6 | VE | 35 | | 11 | 543550.06 | 4162993.94 | 21.3 | 23.3 | 24.1 | 26.0 | VE | 24 | | 12 | 543547.03 | 4162952.16 | 29.6 | 31.6 | 32.3 | 33.8 | VE | 32 | | 13 | 543545.67 | 4162936.09 | 21.3 | 23.1 | 23.8 | 25.3 | VE | 24 | | 14 | 543496.57 | 4161934.23 | 18.2 | 19.4 | 19.9 | 20.8 | VE | 20 | | 15 | 543391.97 | 4161784.39 | 16.6 | 17.8 | 18.2 | 19.0 | VE | 18 | | | · | ordinates
3 UTM Zone 10) | Tot | al Water Elevat | ion (feet NAVD | 88) ¹ | _ | 555 (6) | |----------|-----------|-----------------------------|----------------------|---------------------|---------------------|-----------------------|------|----------| | Transect | X | Y | 10% Annual
Chance | 2% Annual
Chance | 1% Annual
Chance | 0.2% Annual
Chance | Zone | BFE (ft) | | 16 | 543343.74 | 4161790.35 | 15.6 | 16.7 | 17.1 | 18.0 | VE | 17 | | 17 | 543069.75 | 4161992.60 | 16.1 | 17.1 | 17.5 | 18.3 | VE | 17* | | 18 | 541577.76 | 4161777.60 | 27.0 | 29.2 | 30.1 | 32.0 | VE | 30 | | 19 | 541565.23 | 4158996.65 | 18.9 | 20.7 | 21.3 | 22.5 | VE | 21 | | 20 | 541635.60 | 4157596.21 | 27.9 | 32.4 | 34.4 | 39.3 | VE | 34 | | 21 | 541805.83 | 4156305.95 | 23.2 | 25.5 | 26.5 | 28.8 | VE | 27 | | 22 | 541772.88 | 4155917.28 | 29.0 | 32.2 | 33.6 | 36.9 | VE | 34 | | 23 | 541311.25 | 4153873.77 | 19.3 | 23.7 | 25.7 | 30.4 | VE | 26 | | | · | ordinates
3 UTM Zone 10) | Tot | al Water Elevat | ion (feet NAVD | 88) ¹ | _ | 5== (6) | |----------|-----------|-----------------------------|----------------------|---------------------|---------------------|-----------------------|------|----------| | Transect | X | Y | 10% Annual
Chance | 2% Annual
Chance | 1% Annual
Chance | 0.2% Annual
Chance | Zone | BFE (ft) | | 24 | 541523.56 | 4152835.31 | 21.5 | 26.4 | 29.1 | 37.4 | VE | 29 | | 25 | 541871.75 | 4152045.76 | 24.6 | 26.7 | 27.5 | 29.3 | VE | 28 | | 26 | 542482.18 | 4150968.15 | 26.9 | 32.2 | 34.3 | 38.7 | VE | 34 | | 27 | 543099.43 | 4150176.53 | 26.1 | 28.5 | 29.5 | 31.6 | VE | 29* | | 28 | 545417.85 | 4149151.03 | 9.1 | 10.2 | 10.7 | 11.9 | VE | 11 | | 29 | 545546.15 | 4149322.72 | 10.7 | 12.8 | 13.9 | 16.6 | VE | 14 | | 30 | 545771.20 | 4149387.91 | 11.6 | 13.0 | 13.6 | 14.6 | VE | 14 | | 31 | 545956.11 | 4149397.35 | 28.9 | 34.3 | 36.7 | 42.7 | VE | 37 | | | · | ordinates
3 UTM Zone 10) | Tot | al Water Elevat | ion (feet NAVD | 88) ¹ | _ | 5== (6) | |----------|-----------|-----------------------------|----------------------|---------------------|---------------------|-----------------------|------|----------| | Transect | X | Y | 10% Annual
Chance | 2% Annual
Chance | 1% Annual
Chance | 0.2% Annual
Chance | Zone | BFE (ft) | | 32 | 546450.51 | 4149357.57 | 16.3 | 18.1 | 18.8 | 20.5 | VE | 19 | | 33 | 546911.27 | 4149176.40 | 15.4 | 18.4 | 20.0 | 24.3 | VE | 20 | | 34 | 547504.99 | 4148429.49 | 19.2 | 21.2 | 22.0 | 24.0 | VE | 22 | | 35 | 547799.99 | 4147740.07 | 29.2 | 32.0 | 33.1 | 35.5 | VE | 33 | | 36 | 548020.94 | 4146592.62 | 33 | 36.8 | 38.5 | 42.3 | VE | 38* | | 37 | 548027.95 | 4145027.91 | 27.6 | 30.3 | 31.5 | 34.0 | VE | 31* | | 38 | 549163.40 | 4140902.59 | 19.2 | 25.7 | 29.4 | 40.4 | VE | 29 | | 39 | 550178.70 | 4138144.48 | 25.3 | 28.1 | 29.3 | 32.0 | VE | 29 | | | · | ordinates
33 UTM Zone 10) | Tot | al Water Elevat | ion (feet NAVD | 88) ¹ | _ | 555 (0) | |----------|-----------|------------------------------|----------------------|---------------------|---------------------|-----------------------|------|----------| | Transect | X | Y | 10% Annual
Chance | 2% Annual
Chance | 1% Annual
Chance | 0.2% Annual
Chance | Zone | BFE (ft) | | 40 | 551185.20 | 4136302.10 | 31.3 | 34.7 | 36.1 | 39.2 | VE | 36 | | 41 | 552260.56 | 4133175.75 | 17.5 | 19.3 | 20.1 | 21.8 | VE | 20 | | 42 | 551752.22 | 4129900.39 | 17.5 | 18.9 | 19.5 | 20.7 | VE | 19* | | 43 | 551626.11 | 4128203.56 | 19.7 | 21.7 | 22.6 | 24.8 | VE | 23 | | 44 | 551521.59 | 4127226.49 | 20.8 | 23.1 | 24.1 | 26.5 | VE | 24 | | 45 | 551263.82 | 4125337.16 | 21.0 | 22.9 | 23.6 | 25.4 | VE | 24 | | 46 | 550567.40 | 4122996.12 | 19.7 | 21.9 | 22.9 | 25.3 | VE | 23 | | 47 | 550707.83 | 4121185.08 | 23.6 | 25.9 | 26.9 | 29.0 | VE | 27 | | | · | ordinates
3 UTM Zone 10) | Tot | al Water Elevat | ion (feet NAVD | 88) ¹ | _ | 5== (6) | |----------|-----------|-----------------------------|----------------------|---------------------|---------------------|-----------------------|------|----------| | Transect | X | Y | 10% Annual
Chance | 2% Annual
Chance | 1% Annual
Chance | 0.2% Annual
Chance | Zone | BFE (ft) | | 48 | 551412.10 | 4119630.96 | 14.8 | 18.7 | 21.1 | 28.8 | VE | 21 | | 49 | 552625.18 | 4115590.28 | 26.4 | 29.2 | 30.4 | 33.4 | VE | 30 | | 50 | 554128.12 | 4114232.28 | 27.3 | 32.5 | 34.8 | 40.2 | VE | 35 | | 51 | 555755.36 | 4112530.15 | 18.5 | 20.6 | 21.5 | 23.8 | VE | 22 | | 52 | 557185.60 | 4109860.02 | 21.5 | 25.0 | 26.7 | 31.3 | VE | 27 | | 53 | 557246.23 | 4109399.49 | 16.9 | 18.4 | 19.0 | 20.3 | VE | 19 | | 54 | 557480.62 | 4108058.09 | 19.2 | 21.0 | 21.7 | 23.3 | VE | 22 | | 55 | 558407.42 | 4106818.94 | 25.3 | 30.0 | 31.9 | 35.8 | VE | 32 | | Transect | | ordinates
3 UTM Zone 10) | Tot | Total Water Elevation (feet NAVD88) ¹ | | | | | |----------|-----------|-----------------------------|----------------------|--|---------------------|-----------------------|------|----------| | | X | Υ | 10% Annual
Chance | 2% Annual
Chance | 1% Annual
Chance | 0.2% Annual
Chance | Zone | BFE (ft) | | 56 | 560431.85 | 4106743.90 | 16.7 | 19.2 | 20.5 | 24.2 | VE | 21 | | 57 | 560849.75 | 4106974.66 | 20.3 | 24.3 | 26.4 | 31.8 | VE | 26 | | 58 | 561086.72 | 4106974.00 | 15.1 | 17.2 | 18.3 | 21.1 | VE | 18 | | 59 | 562066.44 | 4106651.23 | 16.7 | 18.8 | 19.8 | 22.1 | VE | 20 | ¹North American Vertical Datum of 1988 ^{*}Value has been rounded to the nearest tenth of a foot – precision of results to the hundredths of a foot resulted in rounding the BFE on the FIRM down to the nearest whole foot. Figure 9: Transect Location Map Universal Transeverse Mercator Zone 10 North; North American Datum 1983 #### NATIONAL FLOOD INSURANCE PROGRAM Transect Location Map #### SAN MATEO COUNTY, CALIFORNIA #### PANELS WITH TRANSECTS: 0009G, 0017F*, 0019F*, 0028G, 0036F, 0038F, 0107F*, 0109F, 0117F, 0119F, 0126F, 0128E, 0138F, 0140E, 0232F, 0251F, 0252G, 0254G, 0262F, 0266G, 0268G, 0269G, 0356G, 0357G, 0358F*, 0359G, 0366G, 0367G, 0368F, 0369E, 0431G, 0432E, 0434G, 0441F*, 0442G, 0461G, 0463G, 0464G, 0501F*, 0502G, 0506G *Panel Not Printed #### 5.4 Alluvial Fan Analyses This section is not applicable to this Flood Risk Project. Table 18: Summary of Alluvial Fan Analyses [Not Applicable to this Flood Risk Project] Table 19: Results of Alluvial Fan Analyses [Not Applicable to this Flood Risk Project] #### **SECTION 6.0 – MAPPING METHODS** #### 6.1 Vertical and Horizontal Control All FIS Reports and FIRMs are referenced to a specific vertical datum. The vertical datum provides a starting point against which flood, ground, and structure elevations can be referenced and compared. Until recently, the standard vertical datum used for newly created or revised FIS Reports and FIRMs was the National Geodetic Vertical Datum of 1929 (NGVD29). With the completion of the North American Vertical Datum of 1988 (NAVD88), many FIS Reports and FIRMs are now prepared using NAVD88 as the referenced vertical datum. Flood elevations shown in this FIS Report and on the FIRMs are referenced to NAVD88. These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between NGVD29 and NAVD88 or other datum conversion, visit the National Geodetic Survey website at www.ngs.noaa.gov, or contact the National Geodetic Survey at the following address: NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, Maryland 20910-3282 (301) 713-3242 Temporary vertical monuments are often established during the preparation of a flood hazard analysis for the purpose of establishing local vertical control. Although these monuments are not shown on the FIRM, they may be found in the archived project documentation associated with the FIS Report and the FIRMs for this community. Interested individuals may contact FEMA to access these data. To obtain current elevation, description,
and/or location information for benchmarks in the area, please contact information services Branch of the NGS at (301) 713-3242, or visit their website at www.ngs.noaa.gov. The datum conversion locations and values that were calculated for San Mateo County are provided in Table 20. ## Table 20: Countywide Vertical Datum Conversion [Not Applicable to this Flood Risk Project] A countywide conversion factor from NGVD29 to NAVD88 was +2.75 feet in San Mateo County for all streams and Stillwater elevations. Calculations for the vertical offsets on a stream by stream basis are depicted in Table 21. ## Table 21: Stream-Based Vertical Datum Conversion [Not Applicable to this Flood Risk Project] #### 6.2 Base Map The FIRMs and FIS Report for this project have been produced in a digital format. The flood hazard information was converted to a Geographic Information System (GIS) format that meets FEMA's FIRM database specifications and geographic information standards. This information is provided in a digital format so that it can be incorporated into a local GIS and be accessed more easily by the community. The FIRM Database includes most of the tabular information contained in the FIS Report in such a way that the data can be associated with pertinent spatial features. For example, the information contained in the Floodway Data table and Flood Profiles can be linked to the cross sections that are shown on the FIRMs. Additional information about the FIRM Database and its contents can be found in FEMA's *Guidelines and Standards for Flood Risk Analysis and Mapping*, www.fema.gov/guidelines-and-standards-flood-risk-analysis-and-mapping. Base map information shown on the FIRM was derived from the sources described in Table 22. Data Data Data Type Data Provider Date Scale **Data Description** US Digital 2010 Department of 2010 NAIP Imagery Orthophoto Agriculture Coastal Digital Coastal California LiDAR and Digital Services 2011 Orthophoto Imagery Center California Political Spatial 2004 1:24.000 County Boundaries boundaries Information Library Transportation **US Census** TIGER/Line shapefiles for San 2009 **Features** Bureau Mateo County, CA Public Land **United States** Survey System Geological 1997 Public Land Survey System (PLSS) Survey Levees **FEMA** 2007 San Mateo Levees **Table 22: Base Map Sources** #### 6.3 Floodplain and Floodway Delineation The FIRM shows tints, screens, and symbols to indicate floodplains and floodways as well as the locations of selected cross sections used in the hydraulic analyses and floodway computations. For riverine flooding sources, the mapped floodplain boundaries shown on the FIRM have been delineated using the flood elevations determined at each cross section; between cross sections, the boundaries were interpolated using the topographic elevation data described in Table 23. For each coastal flooding source studied as part of this FIS Report, the mapped floodplain boundaries on the FIRM have been delineated using the flood and wave elevations determined at each transect; between transects, boundaries were delineated using land use and land cover data, the topographic elevation data described in Table 23, and knowledge of coastal flood processes. In ponding areas, flood elevations were determined at each junction of the model; between junctions, boundaries were interpolated using the topographic elevation data described in Table 23. In cases where the 1% and 0.2% annual chance floodplain boundaries are close together, only the 1% annual chance floodplain boundary has been shown. Small areas within the floodplain boundaries may lie above the flood elevations but cannot be shown due to limitations of the map scale and/or lack of detailed topographic data. The floodway widths presented in this FIS Report and on the FIRM were computed for certain stream segments on the basis of equal conveyance reduction from each side of the floodplain. Floodway widths were computed at cross sections. Between cross sections, the floodway boundaries were interpolated. Table 2 indicates the flooding sources for which floodways have been determined. The results of the floodway computations for those flooding sources have been tabulated for selected cross sections and are shown in Table 24, "Floodway Data." Certain flooding sources may have been studied that do not have published BFEs on the FIRMs, or for which there is a need to report the 1% annual chance flood elevations at selected cross sections because a published Flood Profile does not exist in this FIS Report. These streams may have also been studied using methods to determine non-encroachment zones rather than floodways. For these flooding sources, the 1% annual chance floodplain boundaries have been delineated using the flood elevations determined at each cross section; between cross sections, the boundaries were interpolated using the topographic elevation data described in Table 23. All topographic data used for modeling or mapping has been converted as necessary to NAVD 88. The 1% annual chance elevations for selected cross sections along these flooding sources, along with their non-encroachment widths, if calculated, are shown in Table 25, "Flood Hazard and Non-Encroachment Data for Selected Streams." Table 23: Summary of Topographic Elevation Data used in Mapping | | | Source for Topographic Elevation Data | | | | | | |---------------------|--------------------|--|-------|---------------------|----------|--|--| | Community | Flooding
Source | Description | Scale | Contour
Interval | Citation | | | | San Mateo
County | Pacific
Ocean | Coastal California
LiDAR and Digital
Imagery | * | * | * | | | ^{*}Data not available BFEs shown at cross sections on the FIRM represent the 1% annual chance water surface elevations shown on the Flood Profiles and in the Floodway Data tables in the FIS Report. Rounded whole-foot elevations may be shown on the FIRM in coastal areas, areas of ponding, and other areas with static base flood elevations. **Table 24: Floodway Data** | LOCATION | | FLOODWAY | | | 1% ANNU | AL CHANCE FLO | OOD WATER SU
EET NAVD88) | RFACE | |------------------|--|---|--|--|--|--|--|--| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/ SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | ABCDEFGHIJKLMNOP | 100
270
390
790
1,440
1,850
2,300
2,670
3,060
3,910
4,400
4,700
4,940
5,980
6,770
7,590 | 74
67
43
44
67
50
56
55
49
89
195
237
206
49
69
28 | 481
528
318
324
448
299
312
376
356
362
535
1,363
1,402
298
302
229 | 8.7
8.0
13.2
13.0
9.4
14.0
13.5
11.2
11.8
11.6
7.8
3.1
3.0
14.1
11.9
15.7 | 327.8
327.8
327.8
330.6
337.0
344.9
352.5
361.6
365.1
376.0
383.4
393.5
393.6
416.7
436.3
449.6 | 326.1 ² 327.0 ² 327.2 ² 330.6 337.0 344.9 352.5 361.6 365.1 376.0 383.4 393.5 393.6 416.7 436.3 449.6 | 326.1
327.0
327.2
331.4
337.9
344.9
352.5
361.7
365.1
376.0
383.4
393.5
393.6
416.7
436.3
449.6 | 0.0
0.0
0.0
0.8
0.9
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | | TABL | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |------|--|---------------------------------| | E 24 | SAN MATEO COUNTY, CALIFORNIA AND INCORPORATED AREAS | FLOODING SOURCE: LA HONDA CREEK | ¹Feet above mouth ²Elevations computed without consideration of backwater | LOCAT | ΓΙΟΝ | | FLOODWAY | | 1% ANNU | AL CHANCE FLO
ELEVATION (FE | DOD WATER SU
EET NAVD88) | RFACE | |---|--|---|---|---|--|--|--
---| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | A B C D E F G H I J K L M N O P Q R S T U | 197
1,705
3,115
4,344
5,465
6,321
7,938
8,940
10,722
12,017
13,599
14,545
15,710
16,948
17,645
19,338
20,368
21,004
21,140
21,933
22,461 | 261 1,999 2,933 3,316 2,739 1,831 2,138 1,201 850 545 1,217 675 191 165 185 562 394 315 278 190 344 | 3,265
22,137
32,014
35,043
28,014
17,109
15,446
3,141
2,566
2,122
5,534
1,924
1,892
2,773
2,440
3,571
2,624
2,573
2,024
1,848
3,466 | 7.7
1.1
0.7
0.7
0.9
1.4
1.6
5.3
6.5
7.9
3.0
8.7
8.8
6.0
6.8
4.7
6.4
6.5
8.3
9.0
4.8 | 17.3
17.8
17.9
17.9
17.9
17.9
18.0
23.8
30.9
35.2
36.7
39.8
44.9
45.3
47.6
49.6
51.3
51.3
53.7 | 17.3
17.8
17.9
17.9
17.9
17.9
18.0
23.8
30.9
35.2
36.7
39.8
44.9
45.3
47.6
49.6
51.3
51.3
53.7 | 17.4
18.4
18.5
18.5
18.5
18.5
18.6
24.8
30.9
35.6
37.4
39.8
44.9
45.4
48.1
49.8
51.3
51.6
53.7
55.3 | 0.1
0.6
0.6
0.6
0.6
0.6
0.0
0.0
0.4
0.7
0.0
0.0
0.1
0.5
0.2
0.0
0.3
0.0
0.6 | | | | | | | | | | | ¹Feet above mouth | ΤA | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-----|-------------------------------------|----------------------------------| | BLE | SAN MATEO COUNTY, CALIFORNIA | | | 24 | AND INCORPORATED AREAS | FLOODING SOURCE: PESCADERO CREEK | | LOCAT | ION | | FLOODWAY | | 1% ANNU | AL CHANCE FLO
ELEVATION (FE | OOD WATER SU
EET NAVD88) | RFACE | |------------------|-----------------------|-----------------|-------------------------------|--------------------------------|------------|--------------------------------|-----------------------------|----------| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | 50,000 | 70 | 505 | 440 | 000.0 | 222.2 | 000.0 | 0.0 | | A | 50,000 | 70
75 | 505 | 14.3 | 233.9 | 233.9 | 233.9 | 0.0 | | В | 50,450 | 75
 | 555 | 13.0 | 241.6 | 241.6 | 241.6 | 0.0 | | C | 50,830 | 59 | 477 | 15.1 | 245.8 | 245.8 | 246.0 | 0.2 | | D
E
F | 51,670 | 101 | 869 | 8.3 | 253.2 | 253.2 | 253.6 | 0.4 | | <u>E</u> | 52,070 | 164 | 1,444 | 5.0 | 254.6 | 254.6 | 255.5 | 0.9 | | | 52,290 | 144 | 1,782 | 4.0 | 255.8 | 255.8 | 256.7 | 0.9 | | G | 52,420 | 114 | 1,048 | 6.9 | 255.5 | 255.5 | 256.5 | 1.0 | | Н | 52,720 | 360 | 1,425 | 5.1 | 256.6 | 256.6 | 257.1 | 0.5 | | | 52,980 | 362 | 2,522 | 2.9 | 259.9 | 259.9 | 259.9 | 0.0 | | J | 53,450 | 72 | 483 | 14.9 | 263.6 | 263.6 | 263.6 | 0.0 | | K | 53,960 | 50 | 430 | 16.7 | 269.1 | 269.1 | 269.1 | 0.0 | | L | 54,430 | 45 | 482 | 14.9 | 275.1 | 275.1 | 275.8 | 0.7 | | M | 54,830 | 73 | 952 | 7.6 | 281.3 | 281.3 | 281.5 | 0.2 | | N | 56,150 | 59 | 528 | 13.5 | 291.8 | 291.8 | 292.7 | 0.9 | | 0 | 56,300 | 68 | 536 | 13.2 | 293.5 | 293.5 | 294.3 | 0.8 | | Р | 56,500 | 65 | 550 | 12.9 | 296.8 | 296.8 | 296.8 | 0.0 | | Q | 56,820 | 54 | 435 | 16.3 | 300.6 | 300.6 | 300.6 | 0.0 | | Q
R
S
T | 57,230 | 141 | 911 | 7.8 | 306.8 | 306.8 | 306.9 | 0.1 | | S | 57,510 | 137 | 680 | 10.4 | 310.8 | 310.8 | 310.9 | 0.1 | | T | 58,340 | 113 | 618 | 11.5 | 318.7 | 318.7 | 318.7 | 0.0 | | U | 58,940 | 63 | 584 | 12.1 | 323.8 | 323.8 | 323.9 | 0.1 | | V | 59,240 | 86 | 603 | 11.8 | 326.2 | 326.2 | 326.4 | 0.2 | | W | 59,530 | 65 | 603 | 6.0 | 329.1 | 329.1 | 329.3 | 0.2 | | X | 59,960 | 86 | 338 | 10.7 | 338.2 | 338.2 | 338.2 | 0.0 | | Y | 60,400 | 40 | 305 | 11.8 | 342.5 | 342.5 | 342.6 | 0.1 | | Z | 61,210 | 40 | 377 | 9.5 | 348.8 | 348.8 | 348.9 | 0.1 | | AA | 62,380 | 72 | 307 | 11.5 | 373.9 | 373.9 | 373.9 | 0.0 | ¹Feet above mouth FEDERAL EMERGENCY MANAGEMENT AGENCY SAN MATEO COUNTY, CALIFORNIA AND INCORPORATED AREAS **FLOODWAY DATA** FLOODING SOURCE: SAN GREGORIO CREEK | LOCAT | ΓΙΟΝ | | FLOODWAY | | | 1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88) | | | | |---|--|--|--|--|--|--|--|--|--| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | A-D ² E ³ F G H J K L M | 10,890
11,970
13,165
14,260
15,070
15,810
16,580
17,185 | 67
36
72
37
43
41
36
68 | 603
322
602
302
342
321
238
426 | 3.5
6.6
3.5
7.0
6.2
6.7
8.9
5.0 | 34.9
37.1
44.5
47.3
50.3
53.2
57.6
63.2 | 34.9
37.1
44.5
47.3
50.3
53.2
57.6
63.2 | 35.2
37.3
44.7
47.5
50.8
53.9
57.7
63.2 | 0.3
0.2
0.2
0.2
0.5
0.7
0.1
0.0 | | ¹Feet above confluence with San Francisco Bay ²No floodway determined ³Data not available | TAI | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-----|-------------------------------------|----------------------------------| | BLE | SAN MATEO COUNTY, CALIFORNIA | | | 24 | AND INCORPORATED AREAS | FLOODING SOURCE: SAN MATEO CREEK | | LOCAT | ION | | FLOODWAY | | | 1% ANNUAL CHANCE FLOOD WATER SURFACE
ELEVATION (FEET NAVD88) | | | | |-----------------------|---------------------------------------|------------------------------|---------------------------------|---------------------------------|---|---|---|---------------------------------|--| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | A
B
C
D
E | 0
1,110
1,920
2,720
3,600 | 247
302
92
73
64 | 460
800
211
195
183 | 3.3
1.9
7.1
4.8
5.1 | 351.7
352.9
358.2
369.5
378.4 | 351.7
352.9
358.2
369.5
378.4 | 352.7
353.9
359.2
370.4
379.4 | 1.0
1.0
1.0
0.9
1.0 | | ¹ Feet above Limit of Detailed Study at Family Farm Road | | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-----|-------------------------------------|-------------------------------| | BLE | | 120051171 | | 24 | AND INCORPORATED AREAS | FLOODING SOURCE: SAUSAL CREEK | Non-encroachment areas may be delineated where it is not possible to delineate floodways because specific channel profiles with bridge and culvert geometry were not developed. Any non-encroachment determinations for this Flood Risk Project have been tabulated for selected cross sections and are shown in Table 25. The non-encroachment width indicates the measured distance left and right (looking downstream) from the mapped center of the stream to the non-encroachment boundary based on a surcharge of 1.0 foot or less. ## Table 25: Flood Hazard and Non-Encroachment Data for Selected Streams [Not Applicable to this Flood Risk Project] #### 6.4 Coastal Flood Hazard Mapping Flood insurance zones and BFEs including the wave effects were identified on each transect based on the results from the onshore wave hazard analyses. Between transects, elevations were interpolated using topographic maps, land-use and land-cover data, and knowledge of coastal flood processes to determine the aerial extent of flooding. Sources for topographic data are shown in Table 23. Zone VE is subdivided into elevation zones and BFEs are provided on the FIRM. The limit of Zone VE shown on the FIRM is defined as the farthest inland extent of any of these criteria (determined for the 1% annual chance flood condition): - The *primary frontal dune zone* is defined in 44 CFR Section 59.1 of the NFIP regulations. The primary frontal dune represents a continuous or nearly continuous mound or ridge of sand with relatively steep seaward and landward slopes that occur immediately landward and adjacent to the beach. The primary frontal dune zone is subject to erosion and overtopping from high tides and waves during major coastal storms. The inland limit of the primary frontal dune zone occurs at the point where there is a distinct change from a relatively steep slope to a relatively mild slope. - The *wave runup zone* occurs where the (eroded) ground profile is 3.0 feet or more below the 2-percent wave runup elevation. - The wave overtopping splash zone is the area landward of the crest of an overtopped barrier, in cases where the potential 2-percent wave runup exceeds the barrier crest elevation by 3.0 feet or more. - The *breaking wave height zone* occurs where 3-foot or greater wave heights could occur (this is the area where the wave crest profile is 2.1 feet or more above the total stillwater elevation). - The *high-velocity flow zone* is landward of the overtopping splash zone (or area on a sloping beach or other shore type), where the product of depth of flow times the flow velocity squared (hv²) is greater than or equal to 200 ft³/sec². This zone may only be used on the Pacific Coast. The SFHA
boundary indicates the limit of SFHAs shown on the FIRM as either "V" zones or "A" zones. Table 26 indicates the coastal analyses used for floodplain mapping and the criteria used to determine the inland limit of the open-coast Zone VE and the SFHA boundary at each transect. **Table 26: Summary of Coastal Transect Mapping Considerations** | | | Wave Runup
Analysis | Wave Height
Analysis | | | |---------------------|--|--|--|------------------|------------------| | Coastal
Transect | Primary
Frontal Dune
(PFD)
Identified | Zone
Designation
and BFE
(ft NAVD 88) | Zone
Designation
and BFE
(ft NAVD 88) | Zone VE
Limit | SFHA
Boundary | | 1 | ✓ | | VE 25 | Runup | | | 2 | | | VE 23 | Runup | | | 3 | | | VE 27 | Runup | Overtopping | | 4 | | | VE 28 | Runup | | | 5 | | | VE 24 | Runup | | | 6 | | | VE 32 | Runup | Overtopping | | 7 | | | VE 26 | Runup | Overtopping | | 8 | | | VE 24 | Runup | Overtopping | | 9 | | | VE 22 | Runup | | | 10 | | | VE 35 | Runup | | | 11 | | | VE 24 | Runup | Overtopping | | 12 | | | VE 32- 49 | Runup | Overtopping | | 13 | | | VE 24
AE 24 | Runup | Overtopping | | 14 | √ | | VE 20
AH 14 | Runup | PFD | | 15 | | | VE 18
AH 14 | Runup | Overtopping | | 16 | | | VE 17
AH 14 | Runup | Overtopping | | 17 | | | VE 17 | Runup | | | 18 | | | VE 26 – 30 | Runup | Overtopping | | 19 | | | VE 21 | Runup | | | 20 | | | VE 34 | Runup | | | 21 | | | VE 27 | Runup | | | 22 | | | VE 34 | Runup | | | 23 | | | VE 26 | Runup | | | 24 | | | VE 29 | Runup | | | | | Wave Runup
Analysis | Wave Height
Analysis | | | |---------------------|--|--|--|------------------|------------------| | Coastal
Transect | Primary
Frontal Dune
(PFD)
Identified | Zone
Designation
and BFE
(ft NAVD 88) | Zone
Designation
and BFE
(ft NAVD 88) | Zone VE
Limit | SFHA
Boundary | | 25 | | | VE 28 | Runup | | | 26 | | | VE 34 | Runup | | | 27 | | | VE 29 | Runup | | | 28 | | | VE 11 – 37 | Runup | Overtopping | | 29 | | | VE 14 – 37 | Runup | Overtopping | | 30 | | | VE 14 – 37 | Runup | | | 31 | | | VE 26 – 37 | Runup | Overtopping | | 32 | | | VE 19 | Runup | | | 33 | | | VE 20 | Runup | Overtopping | | 34 | | | VE 22 | Runup | | | 35 | | | VE 32 – 33 | Runup | Overtopping | | 36 | | | VE 35 – 38 | Runup | Overtopping | | 37 | | | VE 31 | Runup | | | 38 | | | VE 29 | Runup | | | 39 | | | VE 29 | Runup | | | 40 | | | VE 36 | Runup | | | 41 | | | VE 19 | Runup | | | 42 | | | VE 19 | Runup | | | 43 | | | VE 23
AE 23 | Runup | | | 44 | | | VE 24 | Runup | | | 45 | ✓ | | VE 24 | Runup | PFD | | 46 | | | VE 23 | Runup | | | 47 | | | VE 27 | Runup | | | 48 | | | VE 21 | Runup | | | 49 | | | VE 30 | Runup | | | 50 | | | VE 35 | Runup | Overtopping | | 51 | | | VE 22 | Runup | | | 52 | | | VE 27 | Runup | | | 53 | | | VE 19 | Runup | | | 54 | ✓ | _ | VE 22 | Runup | PFD | | | | Wave Runup
Analysis | Wave Height
Analysis | | | |---------------------|--|--|--|------------------|------------------| | Coastal
Transect | Primary
Frontal Dune
(PFD)
Identified | Zone
Designation
and BFE
(ft NAVD 88) | Zone
Designation
and BFE
(ft NAVD 88) | Zone VE
Limit | SFHA
Boundary | | 55 | | | VE 29 – 32 | Runup | Overtopping | | 56 | | | VE 21 | Runup | Overtopping | | 57 | | | VE 26 | Runup | | | 58 | | | VE 18 | Runup | | | 59 | | | VE 20 | Runup | | #### 6.5 FIRM Revisions This FIS Report and the FIRM are based on the most up-to-date information available to FEMA at the time of its publication; however, flood hazard conditions change over time. Communities or private parties may request flood map revisions at any time. Certain types of requests require submission of supporting data. FEMA may also initiate a revision. Revisions may take several forms, including Letters of Map Amendment (LOMAs), Letters of Map Revision Based on Fill (LOMR-Fs), Letters of Map Revision (LOMRs) (referred to collectively as Letters of Map Change (LOMCs)), Physical Map Revisions (PMRs), and FEMA-contracted restudies. These types of revisions are further described below. Some of these types of revisions do not result in the republishing of the FIS Report. To assure that any user is aware of all revisions, it is advisable to contact the community repository of flood-hazard data (shown in Table 31, "Map Repositories"). #### 6.5.1 Letters of Map Amendment A LOMA is an official revision by letter to an effective NFIP map. A LOMA results from an administrative process that involves the review of scientific or technical data submitted by the owner or lessee of property who believes the property has incorrectly been included in a designated SFHA. A LOMA amends the currently effective FEMA map and establishes that a specific property is not located in a SFHA. A LOMA cannot be issued for properties located on the PFD (primary frontal dune). To obtain an application for a LOMA, visit www.fema.gov/floodplain-management/letter-map-amendment-loma and download the form "MT-1 Application Forms and Instructions for Conditional and Final Letters of Map Amendment and Letters of Map Revision Based on Fill". Visit the "Flood Map-Related Fees" section to determine the cost, if any, of applying for a LOMA. FEMA offers a tutorial on how to apply for a LOMA. The LOMA Tutorial Series can be accessed at www.fema.gov/online-tutorials. For more information about how to apply for a LOMA, call the FEMA Map Information eXchange; toll free, at 1-877-FEMA MAP (1-877-336-2627). #### 6.5.2 Letters of Map Revision Based on Fill A LOMR-F is an official revision by letter to an effective NFIP map. A LOMR-F states FEMA's determination concerning whether a structure or parcel has been elevated on fill above the base flood elevation and is, therefore, excluded from the SFHA. Information about obtaining an application for a LOMR-F can be obtained in the same manner as that for a LOMA, by visiting www.fema.gov/floodplain-management/letter-map-amendment-loma for the "MT-1 Application Forms and Instructions for Conditional and Final Letters of Map Amendment and Letters of Map Revision Based on Fill" or by calling the FEMA Map Information eXchange, toll free, at 1-877-FEMA MAP (1-877-336-2627). Fees for applying for a LOMR-F, if any, are listed in the "Flood Map-Related Fees" section. A tutorial for LOMR-F is available at www.fema.gov/online-tutorials. #### 6.5.3 Letters of Map Revision A LOMR is an official revision to the currently effective FEMA map. It is used to change flood zones, floodplain and floodway delineations, flood elevations and planimetric features. All requests for LOMRs should be made to FEMA through the chief executive officer of the community, since it is the community that must adopt any changes and revisions to the map. If the request for a LOMR is not submitted through the chief executive officer of the community, evidence must be submitted that the community has been notified of the request. To obtain an application for a LOMR, visit www.fema.gov/national-flood-insurance-program-flood-hazard-mapping/mt-2-application-forms-and-instructions and download the form "MT-2 Application Forms and Instructions for Conditional Letters of Map Revision and Letters of Map Revision". Visit the "Flood Map-Related Fees" section to determine the cost of applying for a LOMR. For more information about how to apply for a LOMR, call the FEMA Map Information eXchange; toll free, at 1-877-FEMA MAP (1-877-336-2627) to speak to a Map Specialist. Previously issued mappable LOMCs (including LOMRs) that have been incorporated into the San Mateo County FIRM are listed in Table 27. No LOMRs have been issued since the effective FIS date of October 16, 2012. ## Table 27: Incorporated Letters of Map Change [Not Applicable to this Flood Risk Project] #### 6.5.4 Physical Map Revisions PMRs are an official republication of a community's NFIP map to effect changes to base flood elevations, floodplain boundary delineations, regulatory floodways and planimetric features. These changes typically occur as a result of structural works or improvements, annexations resulting in additional flood hazard areas or correction to base flood elevations or SFHAs. The community's chief executive officer must submit scientific and technical data to FEMA to support the request for a PMR. The data will be analyzed and the map will be revised if warranted. The community is provided with copies of the revised information and is afforded a review period. When the base flood elevations are changed, a 90-day appeal period is provided. A 6-month adoption period for formal approval of the revised map(s) is also provided. For more information about the PMR process, please visit www.fema.gov and visit the "Flood Map Revision Processes" section. #### 6.5.5 Contracted Restudies The NFIP provides for a periodic review and restudy of flood hazards within a given community. FEMA accomplishes this through a national watershed-based mapping needs assessment strategy, known as the Coordinated Needs Management Strategy (CNMS). The CNMS is used by FEMA to assign priorities and allocate funding for new flood hazard analyses used to update the FIS Report and FIRM. The goal of CNMS is to define the validity of the engineering study data within a mapped inventory. The CNMS is used to track the assessment process, document engineering gaps and their resolution, and aid in prioritization for using flood risk as a key factor for areas identified for flood map updates. Visit www.fema.gov to learn more about the CNMS or contact
the FEMA Regional Office listed in Section 8 of this FIS Report. #### 6.5.6 Community Map History The current FIRM presents flooding information for the entire geographic area of San Mateo County. Previously, separate FIRMs, Flood Hazard Boundary Maps (FHBMs) and/or Flood Boundary and Floodway Maps (FBFMs) may have been prepared for the incorporated communities and the unincorporated areas in the county that had identified SFHAs. Current and historical data relating to the maps prepared for the project area are presented in Table 28, "Community Map History." A description of each of the column headings and the source of the date is also listed below. - Community Name includes communities falling within the geographic area shown on the FIRM, including those that fall on the boundary line, nonparticipating communities, and communities with maps that have been rescinded. Communities with No Special Flood Hazards are indicated by a footnote. If all maps (FHBM, FBFM, and FIRM) were rescinded for a community, it is not listed in this table unless SFHAs have been identified in this community. - Initial Identification Date (First NFIP Map Published) is the date of the first NFIP map that identified flood hazards in the community. If the FHBM has been converted to a FIRM, the initial FHBM date is shown. If the community has never been mapped, the upcoming effective date or "pending" (for Preliminary FIS Reports) is shown. If the community is listed in Table 28 but not identified on the map, the community is treated as if it were unmapped. - *Initial FHBM Effective Date* is the effective date of the first Flood Hazard Boundary Map (FHBM). This date may be the same date as the Initial NFIP Map Date. - FHBM Revision Date(s) is the date(s) that the FHBM was revised, if applicable. - *Initial FIRM Effective Date* is the date of the first effective FIRM for the community. This is the first effective date that is shown on the FIRM panel. - FIRM Revision Date(s) is the date(s) the FIRM was revised, if applicable. This is the revised date that is shown on the FIRM panel, if applicable. As countywide studies are completed or revised, each community listed should have its FIRM dates updated accordingly to reflect the date of the countywide study. Once the FIRMs exist in countywide format, as Physical Map Revisions (PMR) of FIRM panels within the county are completed, the FIRM Revision Dates in the table for each community affected by the PMR are updated with the date of the PMR, even if the PMR did not revise all the panels within that community. The initial effective date for the San Mateo County FIRMs in countywide format was 10/16/2012. **Table 28: Community Map History** | Community Name | Initial
Identification
Date (First
NFIP Map
Published) | Initial FHBM
Effective
Date | FHBM
Revision
Date(s) | Initial FIRM
Effective
Date | FIRM
Revision
Date(s) | |---------------------------------|--|-----------------------------------|-----------------------------|-----------------------------------|--| | Atherton, Town of ¹ | 07/16/2015 | N/A | N/A | N/A | 10/16/2012 | | Belmont, City of | 07/19/1974 | 7/19/1974 | 08/20/1976 | 03/09/1982 | 07/16/2015
10/16/2012 | | Brisbane, City of | 05/24/1974 | 05/24/1974 | 010/10/1975 | 03/29/1983 | 10/16/2012 | | Burlingame, City of | 06/28/1974 | 06/28/1974 | 03/04/1977
08/29/1975 | 09/16/1981 | 07/16/2015
10/16/2012 | | Colma, Town of | 10/16/2012 | 10/16/2012 | N/A | 10/16/2012 | 10/16/2012 | | Daly City, City of | 10/16/2012 | 10/16/2012 | N/A | 10/16/2012 | 10/16/2012 | | East Palo Alto, City of | 09/19/1984 | 09/19/1984 | N/A | 09/19/1984 | 10/16/2012
08/23/1999 | | Foster City, City of | 06/14/1974 | 06/14/1974 | 12/12/1975 | 01/07/1977 | 07/16/2015
10/16/2012
01/19/1995 | | Half Moon Bay, City of | 06/03/1986 | N/A | N/A | 06/03/1986 | 10/16/2012 | | Hillsborough, Town of | 10/06/1999 | N/A | N/A | 10/06/1999 | 07/16/2015
10/16/2012 | | Menlo Park, City of | 06/14/1974 | 06/14/1974 | 02/13/1979
08/08/1975 | 02/04/1981 | 10/16/2012
04/21/1999 | | Millbrae, City of | 07/19/1974 | 07/19/1974 | 12/05/1975 | 09/30/1981 | 10/16/2012 | | Pacifica, City of | 06/28/1974 | 06/28/1974 | 09/26/1978
12/05/1975 | 02/04/1981 | 10/16/2012
02/19/1987 | | Portola Valley, Town of | 06/21/1974 | 06/21/1974 | 02/13/1976 | 10/17/1978 | 10/16/2012
09/22/1981
11/13/1979 | | Redwood City, City of | 06/28/1974 | 06/28/1974 | 01/02/1976 | 05/17/1982 | 07/16/2015
10/16/2012 | | San Bruno, City of ¹ | 07/16/2015 | N/A | N/A | N/A | 10/16/2012 | | Community Name | Initial
Identification
Date (First
NFIP Map
Published) | Initial FHBM
Effective
Date | FHBM
Revision
Date(s) | Initial FIRM
Effective
Date | FIRM
Revision
Date(s) | |--|--|-----------------------------------|-----------------------------|-----------------------------------|--| | San Carlos, City of | 06/28/1974 | 06/28/1974 | 08/08/1975 | 09/01/1977 | 07/16/2015
10/16/2012
08/21/1979 | | San Mateo County,
Unincorporated
Areas | 11/01/1974 | 11/01/1974 | 04/15/1977 | 07/05/1984 | 07/16/2015
10/16/2012
08/05/1986 | | San Mateo, City of | 10/19/2001 | N/A | N/A | 10/19/2001 | 07/16/2015
10/16/2012 | | South San
Francisco, City of | 01/10/1975 | 01/10/1975 | 01/17/1978 | 09/02/1981 | 10/16/2012 | | Woodside, Town of | 06/14/1974 | 06/14/1974 | 04/09/1976 | 11/15/1979 | 10/16/2012 | ¹ No Special Flood Hazard Areas Identified #### **SECTION 7.0 – CONTRACTED STUDIES AND COMMUNITY COORDINATION** #### 7.1 Contracted Studies Table 29 provides a summary of the contracted studies, by flooding source, that are included in this FIS Report. Table 29: Summary of Contracted Studies Included in this FIS Report | Flooding
Source | FIS Report
Dated | Contractor | Number | Work
Completed
Date | Affected
Communities | |----------------------|---------------------|--------------------|----------------------|---------------------------|--| | Pacific Ocean | | BakerAECOM | NSFEHQ-09-
D-0368 | June 2015 | San Mateo
County | | San Francisco
Bay | October 16,
2012 | MAP-IX
Mainland | EMF-2003-
CO-0047 | August
2010 | Redwood City,
City of; San
Carlos, City of;
San Mateo
County,
Unincorporated
Areas | | Flooding
Source | FIS Report
Dated | Contractor | Number | Work
Completed
Date | Affected
Communities | |---|---------------------|---|----------------------|-------------------------------|--| | San Francisco
Bay | October 16,
2012 | Nolte
Engineering
Company | EMF-2003-
CO-0047 | June 2007 | Burlingame, City of; Colma, Town of; Foster City, City of; Pacifica, City of; Redwood City, City of; San Carlos, City of; San Mateo, City of; South San Francisco, City of | | San Francisco
Bay | October 16,
2012 | MAP-IX
Mainland | EMF-2003-
CO-0047 | October –
November
2007 | Belmont, City
of; Burlingame,
City of; Colma,
Town of;
Redwood City,
City of; San
Carlos, City of;
South San
Francisco, City
of | | Sources within
City of
Burlingame | | Tudor
Engineering
Company | H-4608 | July 1980 | Burlingame,
City of | | Sources within
City of East
Palo Alto | | Ensign &
Buckley | EMW-90-C-
3133 | August
1999 | East Palo Alto,
City of | | Sources within
Town of
Hillsborough | | Ensign &
Buckley | EMW-94-C-
4572 | February
1998 | Hillsborough,
Town of | | Sources within
City of Menlo
Park | | Ensign &
Buckley | EMW-90-C-
3133 | April 1999 | Menlo Park,
City of | | Sources within
City of Millbrae | | Tudor
Engineering
Company | H-4608 | July 1980 | Millbrae, City of | | Sources within City of Pacifica | | Tudor
Engineering
Company | H-4608 | November
1979 | Pacifica, City of | | Sources within
Town of Portola
Valley | | U.S. Department of Agriculture, Soil Conservation Service | IAA-H-16-72 | March
1975 | Portola Valley,
Town of | | Flooding
Source | FIS Report
Dated | Contractor | Number | Work
Completed
Date | Affected
Communities | |---|----------------------|---|----------------------|---------------------------|---| | Sources within
City of
Redwood City | | Tudor
Engineering
Company | H-4608 | October
1979 | Redwood City,
City of | | Sources within
City of San
Carlos | | U.S. Geological Survey, Water Resources Division, California District | IAA-H-3-73 | June 1976 | San Carlos,
City of | | Sources within
City of San
Mateo | October 16,
20102 | BakerAECOM | EMF-2003-
CO-0047 | February
2012 | San Mateo,
City of | | Sources within
City of South
San Francisco | | Tudor
Engineering
Company | H-4608 | July 1980 | South San
Francisco, City
of | | Sources within
Town of
Woodside | | USGS, Water
Resources
Division,
California
District | IAA-H-3-73 | April 1974 | Woodside,
Town of | | Sources within
San Mateo
County,
Unincorporated
Areas | | Tudor
Engineering
Company | H-4608 | December
1980 | San Mateo
County,
Unincorporated
Areas | #### 7.2
Community Meetings The dates of the community meetings held for this Flood Risk Project and any previous Flood Risk Projects are shown in Table 30. These meetings may have previously been referred to by a variety of names (Community Coordination Officer (CCO), Scoping, Discovery, etc.), but all meetings represent opportunities for FEMA, community officials, study contractors, and other invited guests to discuss the planning for and results of the project. **Table 30: Community Meetings** | Community | FIS Report Dated | Date of Meeting | Meeting Type | Attended By | |-------------------------|------------------|-----------------|--------------|---| | Belmont, City of | 1 | 1 | Initial CCO | 1 | | | | 1 | Final CCO | 1 | | Distance Oil at | 1 | 1 | Initial CCO | 1 | | Brisbane, City of | | 1 | Final CCO | 1 | | Development City of | 1 | 07/28/1977 | Initial CCO | FEMA, this community and the study contractor | | Burlingame, City of | | 11/13/1979 | Final CCO | FEMA, this community and the study contractor | | Colma Town of | 1 | 1 | Initial CCO | 1 | | Colma, Town of | | 1 | Final CCO | 1 | | Dalis City City of | 1 | 1 | Initial CCO | 1 | | Daly City, City of | | 1 | Final CCO | 1 | | | 1 | 06/28/1983 | Initial CCO | FEMA, this community and the study contractor | | East Palo Alto, City of | | 11/01/1983 | Final CCO | FEMA, this community and the study contractor | | | | 08/18/1990 | Initial CCO | FEMA, this community and the study contractor | | Footor City City of | 1 | 1 | Initial CCO | 1 | | Foster City, City of | | 1 | Final CCO | 1 | | Holf Moon Day, City of | 1 | 06/1985 | Initial CCO | FEMA, this community and the study contractor | | Half Moon Bay, City of | | 1 | Final CCO | 1 | | LPR-L | 1 | 1 | Initial CCO | 1 | | Hillsborough, Town of | | 09/30/1998 | Final CCO | FEMA, this community and the study contractor | | Manla Dark City of | 1 | 08/04/1977 | Initial CCO | FEMA, this community and the study contractor | | Menlo Park, City of | | 08/28/1979 | Final CCO | FEMA, this community and the study contractor | ¹Data not available | Community | FIS Report Dated | Date of Meeting | Meeting Type | Attended By | |---|------------------|-----------------|--------------|---| | Menlo Park, City of | 1 | 08/19/1990 | Initial CCO | FEMA, this community and the study contractor | | | | 1 | Final CCO | 1 | | | | 07/1977 | Initial CCO | FEMA, this community and the study contractor | | Desifies Others | 1 | 08/28/1979 | Final CCO | FEMA, this community and the study contractor | | Pacifica, City of | | 05/1983 | Initial CCO | FEMA, this community and the study contractor | | | | 1 | Final CCO | 1 | | Dartala Vallay, Tayya of | 1 | 1 | Initial CCO | 1 | | Portola Valley, Town of | | 07/13/1977 | Final CCO | FEMA, this community and the study contractor | | Dadward City City of | 1 | 08/04/1977 | Initial CCO | FEMA, this community and the study contractor | | Redwood City, City of | | 11/20/1979 | Final CCO | FEMA, this community and the study contractor | | Com Corlos City of | 1 | 1 | Initial CCO | 1 | | San Carlos, City of | | 04/18/1975 | Final CCO | FEMA, this community and the study contractor | | | 1 | 08/04/1977 | Initial CCO | FEMA, this community and the study contractor | | | | 05/21/1982 | Final CCO | FEMA, this community and the study contractor | | San Mateo County,
Unincorporated Areas | | 05/1983 | Initial CCO | FEMA, this community and the study contractor | | o.m.roo.poratoa / moao | | 1 | Final CCO | 1 | | | | 03/08/2011 | Initial CCO | FEMA, this community and the study contractor | | Can Matao City of | 1 | 1 | Initial CCO | 1 | | San Mateo, City of | | 10/20/1998 | Final CCO | FEMA, this community and the study contractor | | South San Francisco, | 1 | 07/28/1977 | Initial CCO | FEMA, this community and the study contractor | | City of | | 08/29/1979 | Final CCO | FEMA, this community and the study contractor | | Mondaida Tayın of | 1 | 1 | Initial CCO | 1 | | Woodside, Town of | · | 08/15/1977 | Final CCO | FEMA, this community and the study contractor | ¹Data not available ## **SECTION 8.0 – ADDITIONAL INFORMATION** Information concerning the pertinent data used in the preparation of this FIS Report can be obtained by submitting an order with any required payment to the FEMA Engineering Library. For more information on this process, see http://www.fema.gov. Table 31 is a list of the locations where FIRMs for San Mateo County can be viewed. Please note that the maps at these locations are for reference only and are not for distribution. Also, please note that only the maps for the community listed in the table are available at that particular repository. A user may need to visit another repository to view maps from an adjacent community. **Table 31: Map Repositories** | Community | Address | City | State | Zip Code | |--|----------------------------------|------------------------|-------|----------| | Atherton, Town of | 91 Ashfield Road | Atherton | CA | 94027 | | Belmont, City of | 1070 Sixth Avenue | Belmont | CA | 94002 | | Brisbane, City of | 50 Park Place | Brisbane | CA | 94005 | | Burlingame, City of | 501 Primrose Road | Burlingame | CA | 94010 | | Colma, Town of | 1198 El Camino Real | Colma | CA | 94014 | | Daly City, City of | 333 90 th Street | Daly City | CA | 94015 | | East Palo Alto, City of | 2200 University Avenue | East Palo Alto | CA | 94303 | | Foster City, City of | 610 Foster City Boulevard | Foster City | CA | 94404 | | Half Moon Bay, City of | 501 Main Street | Half Moon Bay | CA | 94019 | | Hillsborough, Town of | 1600 Floribunda Avenue | Hillsborough | CA | 94010 | | Menlo Park, City of | 701 Laurel Street | Menlo Park | CA | 94025 | | Millbrae, City of | 621 Magnolia Avenue | Millbrae | CA | 94030 | | Pacifica, City of | 1810 Francisco Boulevard | Pacifica | CA | 94044 | | Portola Valley, Town of | 765 Portola Road | Portola Valley | CA | 94028 | | Redwood City, City of | 1017 Middlefield Road | Redwood City | CA | 94063 | | San Bruno, City of | 567 El Camino Real | San Bruno | CA | 94066 | | San Carlos, City of | 600 Elm Street | San Carlos | CA | 94070 | | San Mateo County,
Unincorporated
Areas | 555 County Center | Redwood City | CA | 94063 | | San Mateo, City of | 330 West 20 th Avenue | San Mateo | CA | 94403 | | South San Francisco,
City of | 400 Grand Avenue | South San
Francisco | CA | 94080 | | Community | Address | City | State | Zip Code | |-------------------|--------------------|----------|-------|----------| | Woodside, Town of | 2955 Woodside Road | Woodside | CA | 94062 | The National Flood Hazard Layer (NFHL) dataset is a compilation of effective FIRM databases and LOMCs. Together they create a GIS data layer for a State or Territory. The NFHL is updated as studies become effective and extracts are made available to the public monthly. NFHL data can be viewed or ordered from the website shown in Table 32. Table 32 contains useful contact information regarding the FIS Report, the FIRM, and other relevant flood hazard and GIS data. In addition, information about the State NFIP Coordinator and GIS Coordinator is shown in this table. At the request of FEMA, each Governor has designated an agency of State or territorial government to coordinate that State's or territory's NFIP activities. These agencies often assist communities in developing and adopting necessary floodplain management measures. State GIS Coordinators are knowledgeable about the availability and location of State and local GIS data in their state. **Table 32: Additional Information** | | FEMA and the NFIP | | | |--|---|--|--| | FEMA and FEMA
Engineering Library website | www.fema.gov/national-flood-insurance-program-flood-hazard-mapping/engineering-library | | | | NFIP website | www.fema.gov/national-flood-insurance-program | | | | NFHL Dataset | msc.fema.gov | | | | FEMA Region IX | Federal Regional IX, 1111 Broadway, Suite 1200, Oakland, CA 94607 (510) 627-7029 | | | | | Other Federal Agencies | | | | USGS website | www.usgs.gov | | | | Hydraulic Engineering Center website | www.hec.usace.army.mil | | | | 5 | State Agencies and Organizations | | | | State NFIP Coordinator | Ricardo Pineda, PE, CFM California Department of Water Resources 1416 9 th Street, Room 1601 Sacramento, CA 95814 916-574-0611 rpineda@water.ca.gov | | | | State GIS Coordinator | David Harris Agency Information Officer California Natural Resources Agency 1416 Ninth Street, Room 1311 Sacramento, CA 95814 Phone: 916-445-5088 david.harris@resources.ca.gov | | | ## **SECTION 9.0 – BIBLIOGRAPHY AND REFERENCES** Table 33 includes sources used in the preparation of and cited in this FIS Report as well as additional studies that have been conducted in the study area. **Table 33: Bibliography and References** | Citation in this FIS | Publisher/
Issuer | Publication Title, "Article," Volume, Number, etc. | Author/Editor | Place of
Publication | Publication
Date/
Date of
Issuance | Link | |----------------------|--|---|--|-------------------------|---|---| | Reference
1 | Federal Emergency
Management
Agency | Flood Insurance Study,
San Mateo County,
California
Unincorporated Areas | | | 1982 | FEMA Map Service Center http://msc.fema.gov | | Reference
2 | San Mateo County
League of
Women
Voters | A Guide to County
Government | | | 1971 | | | Reference
3 | San Mateo County
Planning
Department | The Physical Setting of
San Mateo County | | | June 1972 | | | Reference
4 | Ott Water
Engineers, Inc. | Northern California
Coastal Studies | | | August 1984 | | | Reference
5 | U.S. Department of Commerce | Annual Summary,
Climatological Data,
California | NOAA,
Environmental
Data Service | | 1977 | | | Reference
6 | U.S. Department of
the Army, Corps of
Engineers, San
Francisco District | Water Resources Development Interim Survey Report, Pescadero Creek, Pacific Coastal Streams, San Mateo County | | | December
1969 | | | Reference
7 | EarthInfo, Inc | USGS Daily Values | | | 1992 | | | Citation in this FIS | Publisher/
Issuer | Publication Title,
"Article," Volume,
Number, etc. | Author/Editor | Place of
Publication | Publication
Date/
Date of
Issuance | Link | |----------------------|--|--|---|---------------------------------|---|------| | Reference
8 | U.S. Department of
the Army, Corps of
Engineers | Working Paper, Environmental Evaluation of Alternatives for Flood Damage Mitigation for San Pedro Creek | | | April 1975 | | | Reference
9 | Charles S.
McCandless and
Company | Storm Drainage-Brittan
Creek (above El Camino
Real), City of San
Carlos, San Mateo
County, California | | | 1965 | | | Reference
10 | U.S. Department of
the Army, Corps of
Engineers | Report of Floods of
October 1972 and
January 1973 in Colma
Creek Basin, California | | | November
1970 | | | Reference
11 | U.S. Department of
the Army, Corps of
Engineers | Colma Creek Basin, San
Mateo County,
California, Report on
Standard Project Flood
Determination | | San
Francisco,
California | August 1970 | | | Reference
12 | Santa Clara Valley
Water District | Development of Regional Regression Equations for Solution of Certain Hydrologic Problems in and Adjacent to Santa Clara County | A.D. Saah, R.
Talley, and W.J.
Sanchez, JR. | | Unpublished | | | Reference
13 | U.S. Department of
the Interior,
Geological Survey | National Water Data
Storage and Retrieval
System (WATSTORE) | | | March 1979 | | | Citation in this FIS | Publisher/
Issuer | Publication Title, "Article," Volume, Number, etc. | Author/Editor | Place of
Publication | Publication
Date/
Date of
Issuance | Link | |----------------------|---|---|---------------|---------------------------|---|---| | Reference
14 | U.S. Water
Resources Council | "Guidelines for
Determining Flood Flow
Frequency," Bulletin 17A | | | June 1977 | | | Reference
15 | U.S. Department of
Urban Housing and
Urban
Development and
U.S. Department of
the Interior | Basic Data Contribution
32, San Francisco Bay
Region Environment and
Resources Planning
Study, Mean Annual
Precipitation Depth-
Duration-Frequency
Data for the San
Francisco Bay Region,
California | S.E. Rantz | Menlo Park,
California | 1971 | | | Reference
16 | U.S. Department of
the Interior,
Geological Survey | Suggested Criteria for
Hydrologic Design of
Storm-Drainage
Facilities in San
Francisco Bay Region,
California | S.E. Rantz | Menlo Park,
California | 1971 | | | Reference
17 | Federal Emergency
Management
Agency | Flood Insurance Study,
City of Palo Alto,
California | | | August 1979 | FEMA Map Service Center http://msc.fema.gov | | Reference
18 | U.S. Department of
the Army, Corps of
Engineers, San
Francisco District | Survey Report on San
Francisquito Creek, San
Mateo and Santa Clara
Counties, California, for
Flood Control and Allied
Purposes | | | June 1972 | | | Citation in this FIS | Publisher/
Issuer | Publication Title, "Article," Volume, Number, etc. | Author/Editor | Place of
Publication | Publication
Date/
Date of
Issuance | Link | |----------------------|--|---|---------------|-------------------------|---|--| | Reference
19 | U.S. Department of
the Army, Corps of
Engineers,
Hydrologic
Engineering Center | HEC-2 Water-Surface
profiles, Generalized
Computer Program | | Davis,
California | November
1976 | | | Reference
20 | Federal Emergency
Management
Agency | Flood Insurance Study,
City of East Palo Alto,
San Mateo County,
California | | | March 19,
1984 | FEMA Map Service Center
http://msc.fema.gov | | Reference
21 | Federal Emergency
Management
Agency | Flood Insurance Study,
City of Half Moon Bay,
San Mateo County,
California | | | June 3, 1986 | FEMA Map Service Center
http://msc.fema.gov | | Reference
22 | U.S. Department of
the Army, Corps of
Engineers,
Hydrologic
Engineering Center | HEC-1 Flood
Hydrography Package,
Generalized Computer
Program | | Davis,
California | September
1990 | | | Reference
23 | U.S. Department of
the Interior,
Geological Survey | Mean Annual Precipitation Depth- Duration-Frequency Data for the San Francisco Bay Region, California | | | May 1991 | | | Reference
24 | U.S. Department of
Agriculture, Natural
Resources
Conservation
Service | Soil Survey of San
Mateo County, Eastern
Park and San Francisco
County, California | | | May 1991 | | | Citation in this FIS | Publisher/
Issuer | Publication Title, "Article," Volume, Number, etc. | Author/Editor | Place of
Publication | Publication
Date/
Date of
Issuance | Link | |----------------------|--|---|---------------|-------------------------|---|---| | Reference
25 | U.S. Department of
Agriculture, Natural
Resources
Conservation
Service | Technical Release No.6,
Earth Dams and
Reservoirs | | | October 1985 | | | Reference
26 | U.S. Department of
the Army, Corps of
Engineers | Survey Report for
Streams at and in the
Vicinity of San Mateo | | | November
1965 | | | Reference
27 | Santa Clara Valley
Water District | San Francisquito Creek
Hydrology –
Determination of Design
Flows, Draft Report | | | Undated | | | Reference
28 | Stanford University | Report EEP-28, Alternative methods of Flood Control, San Francisquito Creek | J.B. Vincent | | May 1968 | | | Reference
29 | Federal Emergency
Management
Agency | Flood Insurance Study,
City of Menlo Park, San
Mateo County, California | | | February 4,
1981 | FEMA Map Service Center http://msc.fema.gov | | Reference
30 | U.S. Department of
the Army, Corps of
Engineers, San
Francisco District | San Pedro Creek Basin,
San Mateo County,
California, Hydrology
Report | | | August 1974 | | | Reference
31 | U.S. Department of
Agriculture, Natural
Resources
Conservation
Service, Design
Hydrograph
Method | Design Hydrograph
Method , National
Engineering Handbook
4, Chapter 21 | | | | | | Citation in this FIS | Publisher/
Issuer | Publication Title, "Article," Volume, Number, etc. | Author/Editor | Place of
Publication | Publication
Date/
Date of
Issuance | Link | |----------------------|---|---|---------------|-------------------------|---|---| | Reference
32 | Federal Emergency
Management
Agency | Flood Insurance Study,
City of San Carlos, San
Mateo County, California | | | September
1977 | FEMA Map Service Center http://msc.fema.gov | | Reference
33 | U.S. Geological
Survey, Water
Resources Division | "A Uniform Technique
for Determining Flood
Flow Frequencies,"
Water Resources
Council, Bulletin 15 | | | December
1967 | | | Reference
34 | Tudor Engineering
Company | HP-9845 Prismatic
Channel District Step
Backwater Program | | Unpublished | October 1977 | | | Reference
35 | Harl Pugh and
Associates | Topographic Maps
(Manuscript), Scale
1":4,800', contour
Interval 2 Feet; San
Mateo County, California | | | July 1978 | | | Reference
36 | U.S. Department of
Commerce, Coast
and Geodetic
Survey, National
Ocean Survey | San Francisco Bay and
San Joaquin –
Sacramento Delta
Region | | | 1972 | | | Reference
37 | U.S. Department of
Transportation,
Federal Highway
Administration | Hydraulic Engineering
Circular 12, Drainage of
Highway Pavements | | | March 1969 | | | Reference
38
 Tudor Engineering
Company | HP-9845 Culvert
analysis Program | | Unpublished | October 1977 | | | Citation in this FIS | Publisher/
Issuer | Publication Title, "Article," Volume, Number, etc. | Author/Editor | Place of
Publication | Publication
Date/
Date of
Issuance | Link | |----------------------|--|--|---------------|-------------------------|---|------| | Reference
39 | Geonex, Inc. | Topographic Map –
Menlo Park and East
Palo Alto, Scale 1":400',
Contour Interval 2 Feet | | | May 15, 1992 | | | Reference
40 | Santa Clara Valley
Water District | San Francisquito Creek
Improvement Plans,
Scale 1":600' | | | October 14,
1969 | | | Reference
41 | Santa Clara Valley
Water District | Interim Emergency
Flood Protection
Measures for San
Francisquito Creek | | | October 1969 | | | Reference
42 | Nolte and
Associates, Inc. | Menlo Park Floodplain
Mapping, Scale 1":2,400' | | | May 1998 | | | Reference
43 | U.S. Department of
the Army, Corps of
Engineers,
Hydrologic
Engineering Center | HEC-2 Water-Surface
Profiles, Generalized
Computer Program,
Version 4.6.2 | | Davis,
California | September
1990 | | | Reference
44 | Ensign & Buckley | San Mateo Flood Study,
Topographic Mapping,
Scale 1":200', Contour
Interval 2 Feet | | | Undated | | | Reference
45 | U.S. Department of
the Army, Corps of
Engineers, San
Francisco District | San Francisco Bay,
Tidal Stage vs.
Frequency Study | | | October 1984 | | | Reference
46 | State of California,
Department of
Transportation | As-Built plans for
Various Locations of
State Highway 1, 2 | | Unpublished | | | | Citation in this FIS | Publisher/
Issuer | Publication Title, "Article," Volume, Number, etc. | Author/Editor | Place of
Publication | Publication
Date/
Date of
Issuance | Link | |----------------------|--|---|---|-------------------------|---|--------------------------| | Reference
47 | | Portland WSP Computer
Program | | | | | | Reference
48 | U.S. Department of
the Interior,
Geological Survey | 7.5-Minute Series Topographic Maps, Scale 1":24,000', Contour Interval 10 feet: Palo Alto, California (1973); San Mateo, California (1973); Redwood Point, California (1973); Woodside, California (1973) | | | 1973 | http://topomaps.usgs.gov | | Reference
49 | | "Preparation of Input Data for Automatic Computers of Base Stage Discharge Relations of Culverts," Book 7, Chapter C3, Unpublished Technical Guide for the U.S. Geological Survey | Matthai, Howarth,
Stuoll, Harold E.,
and Davidian,
Jacob | Unpublished | 1970 | | | Reference
50 | | "Computation of Water-
Surface Profiles in Open
Channels,," Book 1,
Chapter 1, of Surface
Water Techniques,
Unpublished Technical
Guide for the U.S.
Geological Survey | Anderson, W.L.,
and Anderson,
D.G. | Unpublished | 1964 | | | Citation in this FIS | Publisher/
Issuer | Publication Title,
"Article," Volume,
Number, etc. | Author/Editor | Place of
Publication | Publication
Date/
Date of
Issuance | Link | |----------------------|--|--|---------------|-------------------------|---|--| | Reference
51 | | Preparation of Input Data for Automatic Computation of Stage- Discharge Relations at Culverts | | | January 1978 | | | Reference
52 | U.S. Department of
the Interior,
Geological Survey | 7.5-Minute Series Topographic Maps, Scale 1":24,000', Contour Interval 40 feet: La Honda, California (1961), Photorevised (1968) | | | Various | http://topomaps.usgs.gov | | Reference
53 | U.S. Department of
the Interior,
Geological Survey | 7.5-Minute Series Maps
of Flood Prone Areas,
Scale 1":24,000' Pigeon
Point, California (1971):
Can Gregorio, California
(1971) | | | 1971 | http://topomaps.usgs.gov | | Reference
54 | Federal Emergency
Management
Agency | Flood Hazard Boundary
Map, San Mateo County,
California
Unincorporated Areas,
Scale 1":24,000' | | | 1977 | FEMA Map Service Center
http://msc.fema.gov | | Reference
55 | U.S. Department of
the Interior,
Geological Survey | 7.5-Minute Series Topographic Maps, Scale 1":24,000', Contour Interval 25 feet: San Francisco South, California (1956), Photorevised (1968 and 1973) | | | 1973 | http://topomaps.usgs.gov | | Citation in this FIS | Publisher/
Issuer | Publication Title,
"Article," Volume,
Number, etc. | Author/Editor | Place of
Publication | Publication
Date/
Date of
Issuance | Link | |----------------------|---|---|------------------------------|------------------------------|---|---| | Reference
56 | U.S. Department of
the Interior,
Geological Survey | 7.5-Minute Series Topographic Maps, Scale 1":24,000', Contour Interval 40 feet: San Gregorio, California (1961), Photorevised (1968), Photoinspected (1973) | | | Various | http://topomaps.usgs.gov | | Reference
57 | City of Pacific,
Department of
Public Works | Calera Creek
Realignment | | | August 4,
2010 | | | Reference
58 | Federal Emergency
Management
Agency | Flood Insurance Study,
City of Menlo Park, San
Mateo County, California | | | April 21, 1999 | FEMA Map Service Center http://msc.fema.gov | | Reference
59 | Federal Emergency
Management
Agency | Flood Insurance Study,
San Mateo County,
California
(Unincorporated Areas) | | | August 5,
1986 | FEMA Map Service Center http://msc.fema.gov | | Reference
60 | Federal Emergency
Management
Agency | Flood Insurance Study,
City of Palo Alto,
California | | | August 23,
1999 | FEMA Map Service Center http://msc.fema.gov | | Reference
61 | RM Parsons
Laboratory, M.I.T. | A Two-dimensional
Finite Element
Circulation Model, A
User's Manual for
CAFÉ-1 | James R.
Pagenkopf, et al | | August 1976 | | | Reference
62 | U.S. Department of
Commerce,
National Climatic
Data Center | Meteorological Record
for San Francisco,
California, Airport | | Asheville,
North Carolina | 1944-1983 | | | Citation in this FIS | Publisher/
Issuer | Publication Title, "Article," Volume, Number, etc. | Author/Editor | Place of
Publication | Publication
Date/
Date of
Issuance | Link | |----------------------|--|---|---------------|------------------------------|---|------| | Reference
63 | U.S. Department of
Commerce,
National Climatic
Data Center | Three-Hourly North
American Surface
Weather Maps | | Asheville,
North Carolina | 1955-1983 | | | Reference
64 | U.S. Department of
Commerce,
National Oceanic
and Atmospheric
Administration | Tide Tables, High and
Low Water Predictions,
West Coast of North and
South America | | | 1945-1983 | | | Reference
65 | U.S. Department of
the Army, Corps of
Engineers | Shore Protection Manual | | | 1977 | | | Reference
66 | U.S Department of
the Army, Corps of
Engineers | California Coast Storm
Damage, Winter 1977-
1978 | G.W. Domurat | | 1978 | | | Reference
67 | | "Design of Seawalls and
Breakwaters,"
Proceedings of the
ASCE, Vol. 85, No,
WW3 | I.J. Hunt | | 1959 | | | Reference
68 | U.S. Department of
the Army, Corps of
Engineers, Coastal
Engineering
Research Center | Technical Aid No. 78-2,
Revised Wave Runup
Curves for Smooth
Slopes | P.N. Stoa | | July 1978 | | | Reference
69 | Stanford University | A Program to Construct
Refraction Diagrams and
Compute Wave Heights
for Waves Moving Into
Shoaling Waters | R.S. Dobson | | March 1967 | | | Citation in this FIS | Publisher/
Issuer | Publication Title, "Article," Volume, Number, etc. | Author/Editor | Place of
Publication | Publication
Date/
Date of
Issuance | Link | |----------------------|--|---|---------------------------------|---------------------------|---|------| | Reference
70 | Meteorology
International, Inc. | Deep-Water Wave
Statistics for the
California Coast | | | | | | Reference
71 | U.S. Department of
the Army, Corps of
Engineers,
Waterway
Experiment Station | Technical Report H-78-
26, Flood
Insurance
Study: Tsunami
Prediction for the West
Coast of the Continental
United States | J.R. Houston and
A.W. Garcia | | December
1978 | | | Reference
72 | U.S. Department of
the Army, Corps of
Engineers,
Waterway
Experiment Station | Technical Report H-74-
3, Flood Insurance
Study: Tsunami
Prediction for Pacific
Coastal Communities | J.R. Houston and
A.W. Garcia | | May 1974 | | | Reference
73 | U.S. Department of
the Army, Corps of
Engineers,
Waterways
Experiment Station,
Hydraulics
Laboratory | Technical Report H-79-
2, A Numerical Model for
Tsunami Inundation | J.R. Houston and
H.L. Butler | | February
1979 | | | Reference
74 | U.S. Department of
the Army, Corps of
Engineers,
Waterways
Experiment Station,
Hydraulics
Laboratory | Technical Report H-75-
17, Type 16 Flood
Insurance Study:
Tsunami Predictions for
Monterey and San
Francisco Bays and
Puget Sound | | Vicksburg,
Mississippi | November
1975 | | | Citation in this FIS | Publisher/
Issuer | Publication Title, "Article," Volume, Number, etc. | Author/Editor | Place of
Publication | Publication
Date/
Date of
Issuance | Link | |----------------------|---|--|-----------------------|-------------------------|---|---| | Reference
75 | U.S. Department of
the Army, Corps of
Engineers | Comprehensive Survey
of San Francisco Bay
and Tributaries,
California | | | 1961 | | | Reference
76 | Foster City | Contour Interval 1 Foot | | | 2008 | | | Reference
77 | Ott Water
Engineers, Inc. | Aerial Photography,
Scale 1":4,800', contour
Interval 4 Feet | | | 1983 | | | Reference
78 | Harl Pugh and
Associates | Topographic Maps,
Scale 1":4,800', contour
Interval 2 Feet: San
Mateo County California | | | April 1977 | | | Reference
79 | Federal Emergency
Management
Agency | Flood Insurance Rate
Boundary Map, City of
Pacifica, California | | | February 4,
1981 | FEMA Map Service Center http://msc.fema.gov | | Reference
80 | Photogrammetric
Surveyor, San
Francisco | Town of Portola Valley,
Photogrammetric Maps,
Scale 1":200', Contour
Interval 10 Feet | Chambers,
Wayne R. | | | | | Citation in this FIS | Publisher/
Issuer | Publication Title, "Article," Volume, Number, etc. | Author/Editor | Place of
Publication | Publication
Date/
Date of
Issuance | Link | |----------------------|--|---|---------------|-----------------------------|---|------| | Reference
81 | U.S. Geological
Survey | Quadrangle Maps, Scale 1":24,000, contour Interval 20 Feet: Woodside, California, 1961, Photorevised 1968 and 1973; Palo Alto, California, 1961, Photorevised 1968 and 1973; Mindego Hill, California, 1961, Photorevised 1968; and La Honda, California, 1961, Photorevised 1968 | | | Various | | | Reference
82 | U.S. Geological
Survey | Flood-Prone Area Map | | Mindego Hill,
California | 1968 | | | Reference
83 | Tudor Engineering
Company | City of San Mateo, Work
Map Panel No. 5-1 | | | November
1979,
Revised April
1980 | | | Reference
84 | City of San Mateo
Department of
Public Works | Underground Maps | | | September 9,
1994 | | | Reference
85 | R.M. Towill
Corporation | Topographic Maps,
Scale 1":4,800' | | Woodside,
California | 1967 | | | Citation in this FIS | Publisher/
Issuer | Publication Title, "Article," Volume, Number, etc. | Author/Editor | Place of
Publication | Publication
Date/
Date of
Issuance | Link | |----------------------|--|--|---------------|-----------------------------|---|---| | Reference
86 | U.S. Department of
the Interior,
Geological Survey | 7.5-Minute Series Topographic Maps, Scale 1":24,000', contour Interval 10 Feet: La Honda, California (1961), Palo Alto, California (1961), Woodside, California (1961) | | | 1961 | http://topomaps.usgs.gov | | Reference
87 | Robert H. Born
Consulting
Engineers, Inc. | Report on Analysis of
Foster City Levees | | | December
15, 1987 | | | Reference
88 | Schaaf & Wheeler
Consulting Civil
Engineers, Interior
Drainage Analysis | South of San Mateo
Creek | | San Mateo,
California | October 2009 | | | Reference
89 | Robert H. Born
Consulting
Engineers, Inc. | City of Foster City –
Report of Analysis of
Foster City Levees | | Foster City,
California | December
15, 1987 | | | Reference
90 | HJW GeoSpatial | San Mateo County
LiDAR Data Acquisition | | | October 2005
& January
2006 | | | Reference
91 | City of Redwood
City | Redwood Shores Levee
System Certification | | Redwood City,
California | May 12, 2010 | | | Reference
92 | Federal Emergency
Management
Agency | Guidelines and
Specifications for Flood
Hazard Mapping
Partners | | | 2009 | FEMA Map Service Center http://msc.fema.gov | | Citation in this FIS | Publisher/
Issuer | Publication Title, "Article," Volume, Number, etc. | Author/Editor | Place of
Publication | Publication
Date/
Date of
Issuance | Link | |----------------------|---|---|--|-------------------------|---|---| | Reference
93 | Federal Emergency
Management
Agency | Flood Insurance Study,
San Mateo County,
California and
Incorporated Areas | | | October 16,
2012 | FEMA Map Service Center http://msc.fema.gov | | Reference
94 | Federal Emergency
Management
Agency | Letter of Map Revision
Case Number 12-09-
2887P, Laurel Creek
Update LOMR | | | March 4,
2013 | FEMA Map Service Center http://msc.fema.gov | | Reference
95 | Schaaf & Wheeler
Consulting Civil
Engineers | Foster City Central
Lagoon Base Flood
Elevation | | | April 2014 | | | Reference
96 | | Supplementary WHAFIS Documentation: WHAFIS 4.0, A Revision of FEMA's WHAFIS 3.0 Program | Divoky, D. | Atlanta,
Georgia | 2007 | | | Reference
97 | Federal Emergency
Management
Agency | Wave Height Analysis
for Flood Insurance
Studies(Technical
Documentation for
WHAFIS program
Version 3.0) | | Washington,
D.C. | 1988 | FEMA Map Service Center http://msc.fema.gov | | Reference
98 | Coastal Engineering research Center, Department of the Army, Waterways Experiment Station, U.S. Army Corps of Engineers | Automated Coastal
Engineering System,
version 1.07 | Leenknecht,
David, Andre
Szuwalski, and
Ann R. Sherlock | | 1992 | | | Citation in this FIS | Publisher/
Issuer | Publication Title, "Article," Volume, Number, etc. | Author/Editor | Place of
Publication | Publication
Date/
Date of
Issuance | Link | |----------------------|--|--|-----------------------|---------------------------|---|------| | Reference
99 | U.S. Army Corps of
Engineers,
Waterways
Experiment Station | Shore Protection
Manual, Volumes 1-3 | | Washington,
D.C. | 1984 | | | Reference
100 | Technical Advisory
Committee for
Water Retaining
Structures | Wave Run-up and
Overtopping at Dikes | Van der Meer,
J.W. | Delft, the
Netherlands | 2002 | |